# MAC-SA5X

### Miniature Atomic Clock

### **Summary**

For applications requiring atomic clock stability performance that are unable to accommodate the size and power requirements of rack-mount equipment, the Miniaturized Rb Atomic Clock (MAC-SA5X) is a low-profile, PCB-mountable oscillator. It provides designers with a source of reliable and stable frequency within minutes of power-on.

By leveraging Coherent Population Trapping (CPT) technology used in the Chip Scale Atomic Clock (CSAC) and the previous generation "MAC - SA.3Xm", the new MAC - SA5X family of clocks is the latest advancement in small atomic oscillators. CPT based oscillators feature a laser to interrogate the Rb atoms and achieve atomic resonance. This allows a reduction in size and power compared to traditional lamp-based clocks, without compromising the performance one would expect from an atomic clock: fast retrace, resistance to static g-forces, resistance to temperature changes and low frequency drift rates.



MAC-SA5X shares the same footprint with the legacy SA.3Xm and many traditional OCXOs, but its performance versus size is unparalleled. It's hardware and software have been completely redesigned to add new features such as 1PPS synchronization, improve stability and operate over a wide range of thermal environments. This combination of features along with the ability to quickly provide an atomic frequency reference, is particularly powerful for mobile applications where every minute and every Watt counts.

### **SA5X Family**

Two performance levels are offered to meet a variety of performance and budgetary requirements: SA53 and SA55. The base-performance SA53 is targeted for applications that require an economical solution for frequency stability, such as portable test equipment. The high-performance SA55 has superior aging, TempCo, stability and phase noise compared to the SA53. It may be deployed in existing rubidium applications such as base stations and other applications that require precision frequency and long hold-over.

# **Applications**

- Stand-alone (free-run) stable frequency source for audio equipment, LTE base stations, smart grid and enterprise network infrastructure
- Extended holdover for base stations
- Portable test equipment
- Autonomous sensor networks

#### **Features**

- Sub-microsecond holdover for 48 hour missions\*
- Drift rate <5x10<sup>-11</sup>Hz/Hz /mo (SA55)
- Operating Temperature –40°C to +75°C
- Temperature-induced frequency errors <5x10<sup>-11</sup> Hz/Hz from -10°C to +75°C
- Backwards compatible pin-out/footprint of legacy MAC-SA.3Xm oscillator
- Rapid, reliable warm-up time <8 minutes</li>
- 1PPS output and input for easy calibration/synchronization
- New software allows greater control and health monitoring
- Lead free: RoHS compliant
- Small size:  $2 \times 2 \times 0.7$  inches

\*Predicted assuming zero initial phase/frequency offset, static environment, 25°C, on for 30 days prior to holdover.



# **Electrical**

| RF Output (Pin 3)                             |                         |                         |                   |
|-----------------------------------------------|-------------------------|-------------------------|-------------------|
| Frequency                                     |                         | 10 N                    | ЛHz               |
| Format                                        |                         | CMOS (C                 | to 3.3V)          |
| Load Impedance                                |                         | 1 N                     | ΛΩ                |
| Rise/Fall time                                |                         | < 4                     | nS                |
| Duty Cycle                                    |                         | 50% =                   | ±10%              |
| Quantity                                      |                         | 1                       |                   |
|                                               | PPS Output (Pi          | ins J1-17, 19)          |                   |
| Format                                        |                         | LVDS Squ                | are Wave          |
| Level                                         |                         | EIA/TIA-644             | 4 compliant       |
| Rise/Fall time                                |                         | < 4                     | ·                 |
| D 1 14" III /D                                |                         | 20                      | μS                |
| Pulse Width (Program                          | nmable)                 | (100 nS - 100 n         | nS, 10 nS step)   |
| Quantity                                      |                         | 1                       | l                 |
| 1PPS                                          | S Input (Pins J         | 1-5,7 or J1-1,3)        |                   |
| Format                                        |                         | LVDS Rising Edge        |                   |
| Level                                         |                         | EIA/TIA-644             | 4 compliant       |
| Quantity                                      |                         | 2                       | 2                 |
| Minimum PW                                    |                         | 100                     | nS                |
| Seri                                          | al Communic             | ation (Pins 7,8)        |                   |
| Protocol                                      |                         | RS232                   | UART              |
| Format                                        |                         | CMOS (0 to 3.3V)        |                   |
| Tx/Rx Impedance                               |                         | 1 N                     | ΛΩ                |
| BAUD rate                                     |                         | 576                     | 800               |
| High Speed Communication (Pins J1-2,4,6)      |                         |                         | 4,6)              |
| Protocol                                      | Protocol USB compatible |                         |                   |
| Built In Test Equipment (BITE) Output (Pin 6) |                         |                         | in 6)             |
| Format                                        |                         | CMOS (0 to 3.3V)        |                   |
| Load Impedance                                |                         | 1 ΜΩ                    |                   |
| Logic                                         |                         | 0 = Normal<br>1 = No Ph |                   |
|                                               | Alarm Outpo             |                         |                   |
| Format                                        |                         | CMOS (C                 | to 3.3V)          |
| Load Impedance                                |                         | 1 N                     | ,                 |
| Logic                                         |                         | 0 = Normal Oper         | ration, 1 = Alarm |
|                                               | Power Inpu              |                         |                   |
| Voltage Range                                 |                         | 4.5 to 3                | 32 VDC            |
| Power Consumption                             |                         | **Typical (W)           | Max (W)           |
| @                                             | 65°C:                   | 4.0                     | 6                 |
| ()nerating                                    | 25°C:                   | 6.3                     | 8                 |
|                                               | -10°C:                  | 8.3                     | 11                |
|                                               | –40°C:                  | 10.0                    | 14                |
| Warmup @                                      | All Temps:              |                         | 14                |

<sup>\*\*</sup>Ambient temperature. Each thermal environment will affect exact power consumption/TempCo. Contact factory for details. DO NOT EXCEED 75°C MEASURED AT BASEPLATE.

| Performance Parameters |                                                                                                                          |
|------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Time to Lock           | 8m (> -10°C)<br>12m (< -10°C)                                                                                            |
| Analog Tuning Range    | $\pm 1 \times 10^{-8} \text{ Hz/Hz}$<br>(Resolution: $1 \times 10^{-11} \text{ Hz/Hz}$ )<br>(0 to 5V into 5 k $\Omega$ ) |
| Digital Tuning Range   | $\pm 1 \times 10^{-6}$ Hz/Hz<br>(Resolution: $1 \times 10^{-15}$ Hz/Hz)                                                  |
| Frequency Offset       | ±5 x 10 <sup>-11</sup> Hz/Hz (at shipment)                                                                               |
| Retrace                | ±5 x 10 <sup>-11</sup> Hz/Hz<br>(after 24h on, 48h off, 12h on)                                                          |
| 1PPS output jitter     | < 1 nS (100s Avg)                                                                                                        |

# **Stability**

| ADEV         | SA55 (Hz/Hz)              | SA53 (Hz/Hz)              |
|--------------|---------------------------|---------------------------|
| τ = 1 S      | < 3 x 10 <sup>-11</sup>   | $< 5 \times 10^{-11}$     |
| τ = 10 S     | < 1 x 10 <sup>-11</sup>   | $< 1.6 \times 10^{-11}$   |
| τ = 100 S    | < 3 x 10 <sup>-12</sup>   | $< 5 \times 10^{-12}$     |
| τ = 1,000 S  | < 1 x 10 <sup>-12</sup>   |                           |
| τ = 10,000 S | < 3 x 10 <sup>-12</sup>   |                           |
| Aging        | SA55 (Hz/Hz)              | SA53 (Hz/Hz)              |
| Monthly***   | < 5 x 10 <sup>-11</sup>   | < 1 x 10 <sup>-10</sup>   |
| Yearly       | < 6 x 10 <sup>-10</sup>   | < 1.5 x 10 <sup>-9</sup>  |
| Daily***     | < 2.5 x 10 <sup>-11</sup> | < 2.5 x 10 <sup>-11</sup> |

\*\*\* After 1 month and 1 day of continuous operation, respectively

| Phase Noise<br>(SSB)        | SA55 (dBc/Hz)            | SA53 (dBc/Hz)            |
|-----------------------------|--------------------------|--------------------------|
| 1 Hz                        | <-70                     | <-65                     |
| 10 Hz                       | <-87                     | <-85                     |
| 100 Hz                      | <-114                    | <-112                    |
| 1 kHz                       | <-130                    | <-130                    |
| 10 kHz                      | <-140                    | <-140                    |
| Spurious (non-<br>harmonic) | < -85 dBc                |                          |
| TempCo<br>(Peak-to-Peak)    | SA55 (Hz/Hz)             | SA53 (Hz/Hz)             |
| -10 to +75°C<br>(baseplate) | ≤ 5 x 10 <sup>-11</sup>  | ≤ 1 x 10 <sup>-10</sup>  |
| -40 to +75°C**              | $\leq 1 \times 10^{-10}$ | $\leq 5 \times 10^{-10}$ |

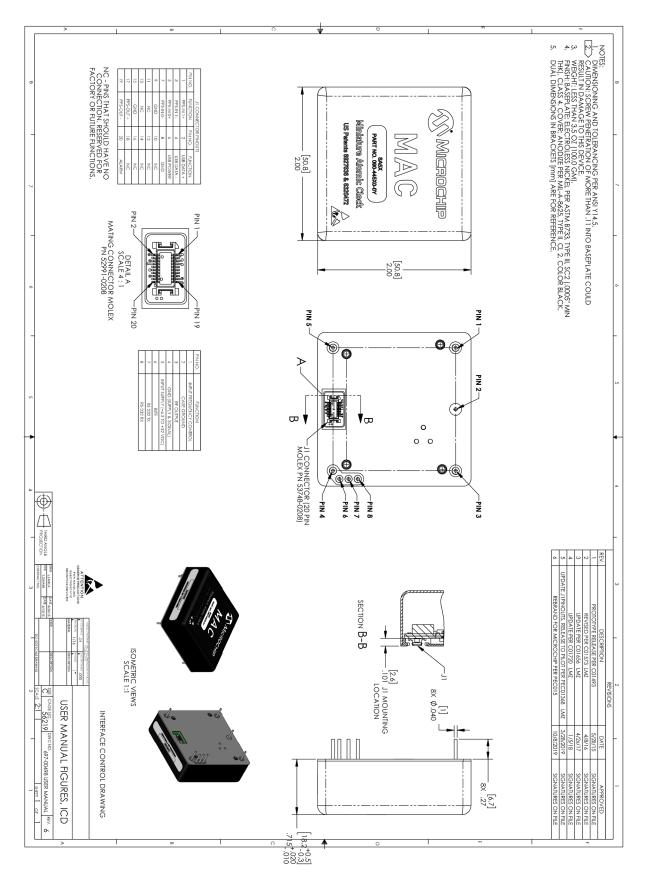


### **Environmental**

|                                         | Operating                                                                                                                                                                  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature Range                       | −40°C to +75°C¨                                                                                                                                                            |
| Magnetic Sensitivity (frequency change) | $< 2 \text{ Gauss } (\pm 7 \times 10^{-11} \text{ Hz/Hz /Gauss})$                                                                                                          |
| Voltage Sensitivity (frequency change)  | $\pm 1$ VDC (<1 × 10 <sup>-11</sup> Hz/Hz, p-p)                                                                                                                            |
| Vibration                               | 7.7 g <sub>rms</sub> /axis per MIL-STD-810, Fig 514.7E-1, Category 24 (General Minimum Integrity Exposure): no loss of lock.                                               |
| Shock                                   | 30g, 11 msec half-sine pulse per MIL-STD-202, Method 213, Test Condition J, 18 shocks (3+ & 3- per axis): no loss of lock, ≤ 4x10-8 Hz/Hz frequency perturbation momentary |
| Humidity                                | GR-63-CORE, issue 4, April 2012, section 4.1.2                                                                                                                             |
| Altitude                                | 50,000 feet                                                                                                                                                                |

| Non-Operating (Storage & Transport) |                                                                                                                |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Temperature<br>Range                | −55°C to +100°C                                                                                                |  |
| Vibration                           | 10.9 Grms @ 1 hr/axis per MIL-STD-810,<br>Fig 514.7E-1, Category 24<br>(General Minimum Integrity Exposure)    |  |
| Shock                               | 50g, 11 msec half-sine pulse per MIL-STD-202,<br>Method 213, Test Condition A, 18 shocks<br>(3+ & 3- per axis) |  |
| Altitude                            | 70,000 feet                                                                                                    |  |

| Name         | Part Number   | Description                                                                                     |
|--------------|---------------|-------------------------------------------------------------------------------------------------|
| MAC-SA55     | 090-44550-01  | 5 x 10 <sup>-11</sup> /mo, 5 x 10 <sup>-11</sup><br>Tempco, AT disabled                         |
| MAC-SA53     | 090-44530-01  | $1 \times 10^{-10}$ /mo, $1 \times 10^{-10}$<br>Tempco, AT disabled<br>Note: AT = Analog Tuning |
| MAC-SA5X Kit | 090-44500-000 | Developers Kit. Does not include MAC                                                            |


# Mechanical

| Size   | 2 x 2 x 0.7 in.                                                 |
|--------|-----------------------------------------------------------------|
| Weight | < 100 g (3.5 oz)                                                |
| MTBF   | 149,743 h (Ground Benign, per<br>MIL-HDBK-217F, 40°C baseplate) |
| RoHS   | 2011/65/EU                                                      |

<sup>\*\*</sup>Ambient temperature. Each thermal environment will affect exact power consumption/TempCo. Contact factory for details. DO NOT EXCEED 75°C MEASURED AT BASEPLATE.

| Baseplate Connector |                           |
|---------------------|---------------------------|
| Pin                 | Function                  |
| 1                   | Analog Tuning             |
| 2                   | Case Ground               |
| 3                   | RF Output                 |
| 4                   | GND (Signal & Supply)     |
| 5                   | Input Supply (4.5 to 32V) |
| 6                   | BITE                      |
| 7                   | RS-232 Tx                 |
| 8                   | RS-232 Rx                 |

| J1 Connector |            |
|--------------|------------|
| Pin          | Function   |
| 1            | PPS-in 1+  |
| 3            | PPS-in 1-  |
| 5            | PPS-in 0+  |
| 7            | PPS-in 0-  |
| 9            | GND        |
| 11           | NC         |
| 13           | NC         |
| 15           | GND        |
| 17           | PPS-out +  |
| 19           | PPS-out -  |
| 2            | USB data + |
| 4            | USB data - |
| 6            | USB Power  |
| 8            | GND        |
| 10           | NC         |
| 12           | NC         |
| 14           | NC         |
| 16           | NC         |
| 18           | NC         |
| 20           | ALARM      |



The Microchip name and logo and the Microchip logo are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated. All Rights Reserved. 1/20 396-44500-000 DS00003348A

